Innovation for Digital Fabrication

March 2012 - March 2014

Coordination & support action
project 290559; theme NMP.2011.2.3-3

Marcel Slot

Océ-Technologies B.V
A Canon Group Company
Start of Diginova

- The digital age advances: industries as well as society need to adapt

- Digital technologies have changed whole industries & consumer behaviour
 - Music industry
 - Photography
 - Printing
 - Communication
 - …

- Manufacturing is lagging behind …

- Innovation with new materials: production technologies are often the bottleneck
Digital design → End-product

- Benefits: short runs, on-demand, zero-waste, no stock, decentralised, fast turnaround, distribute & print (instead of print & distribute), clean & green, ease of use
Concept of Digital Fabrication

Transformation of digital designs directly into physical products using computer controlled-tools and processes
Concept of Digital Fabrication
● We have had an industrial revolution ...

● We have had a digital revolution ...

● *Now is the time for a digital industrial revolution*
Digital Fabrication: paradigm shift in manufacturing

Mass manufacturing
- Mass production
- (intercontinental) transport
- Local distribution centres
- Push model
- Distribution centres
- Huge shopping malls
- Production on demand
- Webshops
- Local production sites

Digital fabrication
- Local production sites
What we believe and set out to do

Digital Fabrication: towards ‘Industry 2.0’

Influence/coordinate EU programs towards new sustainable economic growth
 • Clarify economic & societal relevance of ‘Digital Fabrication’ for Europe
 • Deliver a strong roadmap, aiming for high impact and wide support
 • Focus on both business value and technology

Connect to & involve others. Deliver common framework.

Connect to existing EU programs, research agendas, roadmaps
 • Maximize impact
 • Mobilize & build eco-systems
Diginova: partner overview
Diginova: partner overview
Scope of Digital Fabrication within Diginova

- **Matching manufacturing** technology to key new materials
- **On-demand manufacturing** for customized products with potential for short production series (down to ‘series-of-one’)
- **Shortening change-over times** to accommodate flexible production
- Using **additive manufacturing** methods to enable production of products comprising of more than one material using **minimal resources** with **no waste**
- Exploiting the **inherent freedom of design** in both geometry and material composition to produce products that are more optimized for functional performance and not hampered by limitations imposed by manufacturing processes
Technologies in scope

- **Printing** as a *digital material deposition* technology, including its use for three dimensional products.

- **Laser processing** as defined, clean and fast *digital material modification* technology

- **Coating** and coating sequences as large area *material deposition for functional substrates*
Will our story be heard?
“Print me a Stradivarius”

How a new manufacturing technology will change the world

Coverstory, February 2011
http://www.economist.com/node/18114327
“The third Industrial Revolution”

“The digitisation of manufacturing will transform the way goods are made—and change the politics of jobs too”

Coverstory, April 2012
http://www.economist.com/node/21553017
“Print me a phone”

- New techniques to embed electronics into products
- Convergence of printed electronics & 3D printing

The Economist

July 28th, 2012

http://www.economist.com/node/21559593
3D printing the ‘next revolution’ in manufacturing: President Obama

By Joe McKendrick | February 12, 2013, 7:01 PM PST

In his State of the Union address Tuesday night, U.S. President Barack Obama acknowledged the revival of the long-suffering U.S. manufacturing economy, and points to 3D printing as the technology that will create even more manufacturing opportunities.

Here is an excerpt of the speech:

“Our first priority is making America a magnet for new jobs and manufacturing. After shedding jobs for more than 10 years, our manufacturers have added about 500,000 jobs over the past three. Caterpillar is bringing jobs back from Japan. Ford is bringing jobs back from Mexico. After locating plants in other countries like China, Intel is opening its most advanced plant right here at home. And this year, Apple will start making Macs in America again.

“There are things we can do, right now, to accelerate this trend. Last year, we created our first manufacturing innovation institute in Youngstown, Ohio. A once-shuttered warehouse is now a state-of-the art lab where new workers are mastering the 3D printing that has the potential to revolutionize the way we make almost everything. There’s no reason this can’t happen in other towns. So tonight, I’m
Matching new manufacturing processes and materials: MetalJet an example

Printing liquid metals from the melt (at temperatures up to 2000 C)
Example movies: Jetting of Cu droplets

Cu droplets ‘bouncing of’ glass: poor wetting / adhesion

Cu droplets on silicon surface: good adhesion
Océ Research example: MetalJet

Examples of metals jetted

- Cu
- Ag
- Au
- ...
- Si

Printed miniature logo

Filling of Through Silicon Vias

printed Cu ‘line’ on silicon
Take home messages

- Anything that can be “printed”, will be printed ...

- Anything that can be digital, will be digital ...

- Need for strong and coordinated European effort towards next-generation printing technologies

“The best time to plant a tree was 30 yrs ago.

.... The second best time is now”