Additive Manufacture for Tissue Engineering

Professor Kenny Dalgarno School of Mechanical and Systems Engineering Newcastle University

Overview

- Tissue engineering and scaffolds
- Additive manufacture
- Additive manufacture of scaffolds
- Future work

Needs: Bioactive: able to resorb at a similar rate to that at which the natural tissue grows bioceramics, biopolymers, and polymer-ceramic biocomposites the starting materials Defined topology generally highly porous to support tissue integration, cell transport, nutrient supply Appropriate surface properties and surface chemistry Appropriate mechanical properties

FDM of PLA Cores for Macroscale Porosity in Sintered AW Bioceramic Scaffolds

Future Work

EPSRC Centre for Innovative Manufacturing in Medical Devices

- New Centre for Innovative Manufacture in Medical Devices, led by John Fisher at Leeds, in collaboration with Newcastle, Sheffield, Nottingham, Bradford
- Newcastle lead on personalised 'near patient' manufacturing processes for implantable musculoskeletal devices

AcknowledgementsNaif AlharbiSotiria ToumpaniariYeo TaiMatt BenningOana BretcanuMark BirchChaozong Liu, UCLAndrew McCaskie, Cambridge

