

Surface Engineering for Biomedical Sensor Applications using Digital PlasmaPrinting

Alquin Stevens

InnoPhysics

Fransebaan 592a 5627 JM Eindhoven The Netherlands +31 40 248 4774 info@innophysics.nl

6-11-2013

♦ Introduction into the world of µPlasmaPrint

• and its surface engineering solutions for bio(-medical) sensor application

µPlasmaPrint : digital printing with activated molecules

µPlasmaPrint : digital printing with activated molecules

"Instead of ink droplets, we digitally print plasma activated molecules"

Basic principle and time scales

One "plasma dot" of $\Delta t \sim 500 \ \mu s$

One "plasma dot" of $\Delta t \sim 500 \ \mu s$

= a multitude of tiny discharges

Plasma Source Technology

- 24 independently controllable discharges (400 Hz)
- 50 / 200 μ m electrodes; 50 300 μ m discharge gap.
- $2 10 \text{ kV}_{pp}$ at 10 100 kHz.
 - Controlled **atmospheric** pressure **gas flow** in discharge gap

2 x 12 needle printhead

۲

µPlasmaPrint solutions

PiXDRO LP50

Process integration Combining inkjet, laser, plasma

µPlasmaPrint Station

µPlasmaPrint head + substrate table and controller + in-line camera

Tabletop R&D print platforms

6-11-2013

Software controlled, 100+ μ m spatial (XY) patterning of nm scale (Z) functionalities

- Wetting / de-wetting
- surface energy tailoring & gradients
- Selective surface chemistry

Bonding, adherence, cleaning, enabling printing

fluid-surface interaction improvement

Amino, hydroxyl, ...

Flexibility of digital printing combined with versatility of atmospheric plasma processing

Surface engineering for biosensor applications

Conceptual example: Disposable Point of Care biosensor cartridge

Vo-Dinh et al., Fresenius J Anal Chem (2000) 366, 540–551 **Diginov@2045h@b@Pl**et al., Sensors (2008) 8, 1400-1458 Siow et al., Plasma Process. Polym. (2006) 3, 392–418

10

Surface engineering for biosensor applications

Conceptual example: Disposable Point of Care biosensor cartridge

Vo-Dinh et al., Fresenius J Anal Chem (2000) 366, 540–551 **Diginov** 2045 A @ Plet al., Sensors (2008) 8, 1400-1458 Siow et al., Plasma Process. Polym. (2006) 3, 392–418 **Surface engineering for biosensor applications**

A: Surface energy tailoring Microfluidics

B: Amine functionality printing Immobilizations

C: Metallization

Electrodes

Part A: Surface energy engineering

surface energy engineering solution for microfluidics

Part A: Microfluidics

Created using µPlasmaPrint

Hydrophobic-hydrophilic contrast By removal of nm-scale hydrophobic films Mirrored image on top and bottom glass slide With thin spacer to enable fluid flow

"Surface" channels Alternative for physical channels

Part B: Biomarker / protein immobilization

Local plasmaprinting of amines

Part B: Amine functionality printing on fluorinated polymer

Deposition of amines, layer by layer using APTMS

Surface energy decrease with increasing # print repeats

Diginova 2013 @ CPI

Elemental XPS Spectrum of Carbon (C1s) and Nitrogen (N1s)

Part B: Amine concentrations from XPS

In collaboration with Jean-Paul Schalken Wytze Keuning , Adriane Creatore

	С			-	Ν				F	Si	0
		C1	C2	C3		N1	N2	N3			
FEP substrate (Ref.)	33.5								66.5		
1 PR	41.9				13.4				5.5	11.9	27.3
		24.9	10.8	2.7		9.1	2.5	1.7			
5 PR	39.6				13.6				1.2	12.3	33.8
		17.8	14.3	7.5		5.2	6.3	1.7			
20 PR	41.3				13.0				0.0	12.2	33.5
		17.4	17.1	6.8		4.7	7.4	0.9			
Borris et al.	41.9				10.2					13.2	34.7
		22.2	15.1	4.6		2.5*	*CD-X	PS			

Biomedical sensor : Protein/biomarker immobilization

4 - 9 % amine surface coverage, comparable with lit.

Counts / s (10³.s⁻¹)

= Surface density control

Borris et al., Plasma Process. Polym., 4, S482-S486 (2007).

Diginova 2013 @ CPI

TU

Part C: Metallization for electrodes / metal tracks

Step 1: Amine functionality print using µPlasmaPrint

Step 2: selective metal-salt chemistry to enable

Step 3: electroless Ni, Cu metal tracks & pads

(-> galvanic strengthening)

Indirect, digital, metal printing on foil Low temperature, no curing required

In summary

Introduction into the world of µPlasmaPrint surface engineering solutions

digital printing with molecules to achieve spatial, surface chemical & physical properties control plasma activation enables low temperature processing at nm scale sensitivity

Direct, digital plasma printing of surface functionalities for biosensor application

A: surface microfluidics printingB: immobilization through amines printingC: indirect metal electrodes / tracks printing

Flexibility of digital printing combined with versatility of atmospheric plasma processing

Acknowlegdements

Jean-Paul Schalken, Wytze Keuning, Adriane Creatore, Erwin Kessels

Fontys Martijn van Dongen, Jan Bernards

.. and funding & partners in..

TU/e

Silicon MEMS by inkjet enhanced technologies

RAAK Pro Inkjet Project

Local cleaning & repair strategies to improve yield in **organic printed electronics** manufacturing

Reactive Atmospheric Plasma Chemistry Started 1st October 2013, PhD positions available

NEW Starting soon : **tissue engineering** solutions

All PlasmaPrinted biomedical sensor substrate base

- Design and process *flexibility* in R&D
- Scaling capability for *low cost* disposables production

Thank you for your attention! Questions?